GL

GL Noble Denton Measuring Up - How does the performance of your facility rank within the industry?

Neil Wragg

www.gl-nobledenton.com

Contents

- 1. How do we measure Asset Performance?
- 2. Production Optimisation
- 3. RAM Software OPTAGON[™]
- 4. Measuring Up against 'Industry Standard' performance
- 5. Case Study An Ageing North Sea platform
- 6. Q&A?

Measuring Asset Performance – Which metric?

Safety	Lost Time IncidentsNear Misses	
Environment	Carbon emissionsFlare volumes	
Production	 Operational Efficiency Production Volumes 	
Commercial	RevenuesPenalties	
Corporate Image	Public PerceptionMedia Reports	

Production Optimisation

hun

The Value of Production Optimisation

The key reasons for carrying out production optimisation are to:

- Maximise revenues through increased production
- Benchmark performance and quantify 'lost' production potential
- Reduce CAPEX and OPEX investment
- Optimise design and operation
- Target investment and maintenance activity
- Reduce contractual penalties by optimising commercial strategy
- Assess availability of export routes

The GL Noble Denton Solution

"Full Life Cycle Applicability"

OPTAGON[™]

- Risk based availability approach
- Developed to analyse performance of complex oil, gas & LNG asset chains
 - Optimise performance
 - Maximise profitability
 - Understand an quantify technical and commercial risk

- Developed by GL Noble Denton
- Monte Carlo simulations to enable multiple streams and interactions to be modelled
- Systematic and consistent approach to assessing assets

How does your asset measure up?

Hum

NX

Model Input Data

	Information	Source
Asset Data	 Equipment Configuration Equipment Criticality System Capacities Production Targets Planned Maintenance 	 PFDs FMECA workshop Heat & Material Balance Sales Contracts PM Schedules
Reliability Data	 Mean Time Between Failure Mean Time to Repair Logistic Delays Resource Constraints 	 Asset Specific (Historical) Production Loss Accounts Maintenance Logs Industry Standard OREDA GL Database

Asset Specific Model

Key Outputs

- Probabilistic production forecasts
 - Realistic production targets (Mean, P10, P90)
 - Maximum production potential
 - Year-on-year trending

- Production loss contributor analysis
 - Identification and quantification of main loss sources
 - Year-on-year trending of equipment loss contributions

Comparison with Industry Standard Model

Benchmark actual operation against industry standard performance

- Quantify realistic asset potential
- Identify lost production potential
- Identify systems that are underperforming
- Compare average durations between unplanned shutdown

-1.00% -1.50% -2.00%

Improvement Plan

Where to focus time and resources to close gap between current and industry standard performance

- Set achievable goals supported by quantitative assessment
- True cost-benefit analysis
- Identify 'quick wins'
- Targeted OPEX investment
- Regular review with model update

Regular Updates – 'Live Modelling'

Maintain a model that represents current asset performance

- Up-to-date probabilistic production forecasts
- Year-on-year performance trending
- Capture latest equipment reliability and operating philosophy
- Incorporate planned modifications / CAPEX projects
- Identification of equipment / system deterioration
- Assess impact of future design and operational issues:
 - Reservoir depletion
 - Changes to platform configuration
 - New field tie-backs
 - Equipment redundancy levels
 - Planned Maintenance schedules

Case Study: An Ageing North Sea Platform

tillin .

AX

An Ageing North Sea Platform

'Live' OPTAGON model updates since 2008

Quarterly updates to the model considered:

- Equipment reliability based on production loss accounts
- Revised well profiles
- Changes in equipment configuration and reliability

Key outputs from the analysis included:

- Shortfall contributors at equipment and system level
- Comparison of asset performance vs. industry standard
- Identify underperformance of individual equipment items

2013 Predicted OE Performance – Exceedance Curve

2013 Predicted OE Performance – Mean, P10 & P90

Lost Production Wheel by System

Asset 2 Predicted Main Loss Sources

Component	Asset Specific Model Predicted Loss (MMscf)	Industry Standard Model Predicted Loss (MMscf)	2012 Calculated Availability	2011 Calculated Availability	Change in Availability	Change in overall OE if Working at Industry Standard
Export Compressor	1900	74	84.1%	81.9%	2.2%	7.5%
Integrity Issues	550	N/A	93.2%	95.1%	-1.9%	2.0%
Gas Turbine	390	532	98.0%	97.5%	0.5%	-0.4%
Warm-Up Delays	485	N/A	98.1%	97.7%	0.4%	1.5%
Well A1 Availability	305	N/A	90.0%	88.4%	1.6%	1.1%
Valve Issues	232	N/A	98.8%	98.4%	0.4%	0.8%
Well A2 Availability	195	N/A	89.5%	87.2%	2.3%	0.7%
Condensate Pumps	175	3	98.1%	98.4%	-0.3%	0.6%
Platform Availability	150	N/A	99.1%	98.6%	0.5%	0.5%
Other Restriction	110	N/A	99.5%	99.4%	0.1%	0.5%

Biggest Swings - Changes in Availability

Improvement Plan – Clear Recommendations

Highlighted poor compressor performance – Significant performance improvement through adopting a revised maintenance strategy

2. Identified equipment for replacement or repair

- Identify areas performing below industry expected levels by replacing, repairing or sparing specific equipment items, there was a significant reduction in production shortfall
- 3. Implement subsea tieback projects
- Quantified the benefit in operational efficiency of **implementing additional subsea tiebacks**

4. Optimised spares holding

Reduce production losses by implementing optimum spares holding for specific equipment items

Adopting a **revised maintenance strategy** resulted in an increase in production equating to approximately **\$6M per annum**

GL Noble Denton

Any Questions?

For further information please contact Neil Wragg: neil.wragg@gl-group.com

www.gl-nobledenton.com